
Completely integrable equations: dynamical groups and their nonlinear realisations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1937

(http://iopscience.iop.org/0305-4470/12/11/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 11, 1979. Printed in Great Britain 
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Abttmd. It is shown that the dynamical groups of completely integrable equations contain 
as subgroups the infinite groups of symmetry (of the type Gn,,,), and the infinite Abelian 
groups of Backlund transformations. It is demonstrated that the completely integrable 
equations possess the elementary Backlund transformations of different types. The relation 
between two methods of describing the completely integrable systems in terms of the field 
equation and the dynamical group is discussed. 

It is also shown that the field theories described by the completely integrable equations 
are the theories of the Nambu-Goldstone type, i.e. these are the theories of spontaneous 
breakdown of the symmetry with respect to the infinite dynamical groups, and the 
corresponding fields are the Goldstone ones by which this spontaneous breakdown is 
accompanied. In particular, any free field can be considered as a Goldstone one. 

1. Introduction 

Nonlinear equations describing classical fields are currently attracting considerable 
interest. The so-called completely integrable equations have been investigated in most 
detail. A broad class of completely integrable equations studied by the inverse 
scattering method (see the review papers of Ablowitz eta[ (1974), Scott etal (1973) and 
Flashka and Newel1 (1975)) possesses a number of interesting properties (solitons, 
infinite sets of the integrals of motion, etc). 

Such specific features of the equations under consideration seem to be associated 
with the special symmetry properties of these equations. For instance, in a previous 
paper (Konopelchenko 1977) it has been demonstrated that completely integrable 
equations have infinite groups of symmetry of the type Grim. 

In the present paper we examine the dynamical groups of completely integrable 
equations. A dynamical group is the group of transformations converting any solution 
of the given equation into any other solution of the same equation. We show that the 
dynamical groups of completely integrable equations contain the infinite groups of 
symmetry as subgroups (of the type G,,), as well as the infinite Abelian groups of 
general Backlund transformations. The Backlund transformations for different 
nonlinear equations are extensively studied by Lamb (197 l), Wahlquist and Estabrook 
(1973), Wadati etal (1975), Konno and Wadati (1975) and others, and we shall satisfy 
ourselves that these transformations are included in the dynamical group in a natural 
way. We shall see also that completely integrable equations contain the Backlund 
transformations of different types. In this paper, it is shown that the property of total 
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1938 B G Konopelchenko 

integrability is closely connected with the fact that the equation has the Abelian group 
of Backlund transformations. 

We also show that the field theories described by the completely integrable 
equations are the theories of the Nambu-Goldstone type; these theories can be 
considered as those of spontaneous breakdown of infinitely parametric dynamical 
groups of the symmetry and the corresponding fields as the Goldstone fields by which 
this spontaneous breakdown is accompanied. In particular, any free field with arbitrary 
mass and spin can be interpreted as a Goldstone one. Thereby the Goldstone particles 
can have any values of both mass and spin. 

In the second section the dynamical groups of linear equations are considered. The 
third section is devoted to nonlinear completely integrable equations. The structure of 
infinite groups of Backlund transformations is investigated. The equivalence of two 
methods for describing the completely integrable systems (by means of the field 
equation, or the dynamical group) is discussed as well. 

In the fourth section it is shown that the theories described by the completely 
integrable equations result from the Nambu-Goldstone (nonlinear) realisation of the 
symmetry with respect to some dynamical group. The consequences are discussed in 
the fifth section. 

2. Linear equations 

Let us begin our study with the simplest completely integrable equations. Let us 
consider the field equation 

f(a/ax)$(x) = 0 12.1) 

where x = {x,} are the space-time coordinates ( p  = 0,1, . . . , N), f(a/ax) is the arbi- 
trary differential operator, and $(x) are the field variables. The space-time dimen- 
sionality N + 1 and the number of field components are arbitrary. 

By analogy with the quantum mechanics problems (see for example Kleinert 1968, 
Aronson et a1 1974) the group Df of the transformations 4 + $', converting any 
solution 4 of equation (2.1) into any other solution 4' of the same equation, will be 
referred to as a dynamical group of the field equation (2.1). For simplicity, one 
considers the infinitesimal transformations IC/ --f 4' = JI + a$. Then, by definition of a 
dynamical group, 

y(I3/ax) St+b(x) = 0. (2.2) 

Taking into account equation (2.1), one finds that W ( x )  is of the form 

(2.3) 

where a, are the transformation parameters, D, ( x )  are the differential operators 
commuting with f{[f(a/ax), D,(x)] = 0) and w ( x )  is the arbitrary solution of equation 
(2.1). The transformation of the type (2.3) can be represented in the form of combina- 
tion of two transformation types: 

(2.4) 

( 2 . 5 )  
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The transformations (2.4) are those of the symmetry group of equation (2.1) in the 
infinitesimal form. In the previous paper (Konopelchenko 1977) it has been shown that 
the symmetry group of equation (2.1) is the infinite one and belongs to the type G,,. 
The arbitrary element of the symmetry group G,, is equal to 

where {Lm, $ ( x ) }  = D,(x)+b(x)  and { , } is the Poisson bracket. The generators L,  of the 
group G,, can be written as 

La =-  (2.6) 

where I I ( x )  are the canonical momenta {$(x, XO), n(y, X O ) }  = S(x - y). 
Transformations (2.5) also form an infinite group, since w ( x )  is the arbitrary solution 

of equation (2.1), and the number of independent solutions of such an equation is 
infinite. The arbitrary element of this group is of the form? 

g = exp(iB,) 

where 

B, = - dNX w ( x ) I l ( x )  (2.7) I 
and 

W ( X )  ={B,, $(x)} = @ ( X I .  (2.8) 

The operator B, is the generator of transformations (2.5) forming, by virtue of 
{B,, B,,}= 0, the infinite Abelian group, which will be identified as a group B of 
Backlund transformations. The invariance of equation (2.1) with respect to the group 
of Backlund transformations is, of course, a consequence of the linearity of the equation 
over the field $ ( x )  and the Abelian character of this group (and the corresponding 
algebra)-the mathematical formulation of the linear superposition principle. 

Let us show that the group of Backlund transformations may be represented as an 
infinitely parametric Abelian group. For this, one expands w ( x )  (the arbitrary solution 
of equation (2.1)) over the total set of solutions for this equation. Let us choose the 
eigenfunctions of a certain total set of operators hi as a basis in the solution space: 

Aih ( x  1 = 5i5i ( x  1 (2.9) 

Writing out w ( x )  in the form 

one finds 

B, = 1 wiBi 
i 

(2.10) 

t Note that a gauge group, if equation (2.1) has such a group, is a subgroup of this group. For example, for the 
vector field A, the equation CIA, - a,a,.AA, = 0 is invariant with respect to the transformations A, +A:  = 
A, +om, where o,(x) is the arbitrary Solution of the first equation. The subgroup of transformations with 
CO,, = a d ( x ) ,  where p ( x )  is the arbitrary function of coordinates, corresponds to the gauge group. 
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where 

Bi = dNx &(x)lI(x) = n;(x).  (2.1 1) I 
Thus, the general Backlund transformation is, by virtue of (2.10), the linear super- 
position of ‘elementary’ Backlund transformations with generators B, and trans- 
formation parameters ~ ~ ( - 0 3  < mi < 03). Since {Bi, Bk} = 0 ,  this group is Abelian. 

For an ‘elementary’ Backlund transformation 

ak(Il(X)=mk{Bk, $(x)}=okek(x), 
i.e. the action of the transformation of interest reduces to the addition of the basis 
element &(x) with amplitude wk, which plays the role of the transformation parameter 
(-a3 < Wk <a), to the initial solution +(x). With equation (2.9) taken into account, the 
action of the elementary Backlund transformation 4(x)  -$ @(x) can also be given as 
follows: 

(2.12) 

In the papers of Lamb (1971), Wahlquist and Estabrook (1973), Wadati (1975) and 
others the Backlund transformations were considered in just the same form. 

One emphasises that, proceding from one basis &(x) on the solution space to the 
other, we correspondingly proceed to another form of the ‘elementary’ Backlund 
transformation. It is evident that the generators of ‘elementary’ Backlund trans- 
formations in different bases are connected by linear transformations. 

For the translationally invariant equations it is convenient to use the basis consisting 
of the eigenfunctions of the momentum operator P,, i.e. of the plane waves: 

Ai (X )(+‘(x) - 4(x )) = li ( 4 ’ ( ~ )  - 4 (X 1). 

P, exp(-ipx) = p, exp(-ipx). 

In this basis 

B, = I dN+’pa(det f(ip))w,B, (2.13) 

where 

B, = dNx exp(-ipx)lI(x). I 
Correspondingly, for the ‘elementary’ Backlund transformation 

a&(x) = m,{B,, +(x)l = w p  exp(-ipx) (2.14) 

(2.15) 

where det f(ip) = 0. 
Thus the action of a Backlund transformation in the momentum basis is reduced to 

the addition of the plane wave with momentum p and amplitude up, which is the 
parameter of the transformation (-00 < q, < a), to the solution. 

The generators Bi of elementary Backlund transformations and the generators L, 
of the symmetry group form together the algebra of a dynamical group. The permu- 
tation relations for the generators of this algebra can be easily found, following from 
equations (2.6) and (2.11). The permutation relations for the generators of this 
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symmetry group are given by Konopelchenko (1977). The generators of Backlund 
transformations commute: {Bi, Bk} = 0. The remaining permutation relations are of the 
form 

(2.16) 

Here I),(() are the infinitesimal operators of the symmetry group in representation, 
particularly in the momentum representation 

{Bi, La) = D e  (5)Bi. 

{B*, P,} = q,B,. 

Hence we see that the dynamical group of the linear equation contains trans- 
formations of two types: transformations of the symmetry group and the Backlund 
transformation group. The dynamical group acts within the solution space in a 
transitive manner and, moreover, this is the minimum group for which the solution 
space of the equation is homogeneous. For a free quantum field all the space of states 
(the Fock space) is correspondingly the space of the irreducible infinite-dimensional 
representation of the infinite dynamical group (see Appendix). 

3. Nonlinear equations 

As is known, a nonlinear equation is completely integrable if it allows such a canonical 
transformation of the initial canonical variables t,b(x), n (x)  to the canonical variables 
S(A),  R(A, t )  where the equation under consideration is of the form 

dS(A)/dt = 0, dn(A, t)/dt = SH{S}/GS(A) = yA{S(A’)} .  (3.1) 

The index A numerates the infinite set of variables S and R, and can take both 
continuous and discrete values. H is the Hamiltonian. 

Since the initial nonlinear equation and equations (3.1) are connected by the 
canonical transformation, the information contained in one of them coincides with that 
involved in the other. Particularly, the symmetry groups and the dynamical groups of 
these equations coincide. Following from this, Konopelchenko (1977) studied the 
symmetry groups of completely integrable equations. It has been shown that the 
infinite groups of the type G,, are the symmetry groups of such equations. 

Here we consider the structure of the dynamical groups of completely integrable 
equations and, in more detail, the Backlund transformations group. 

For the sake of simplicity, let us restrict ourselves to the completely integrable 
equations for which yA{S} = yA{S(A)).  Then there is no difficulty in seeing that there 
exist canonical variables wherein the equations of motion are of the form 

(3.2) 

Equations (3.2) are linear, and repeating the considerations of the foregoing section, 

( 3 . 3 ~ )  

da(A, t ) / d t  +if(A)a(A, t )  = 0 

where f(A ) is a certain function of the index A. 

we conclude that they possess the infinite group of Backlund transformations 

a (A,  t )  + a’(& t )  = a (A,  t )  + w (A, t )  

or 

Sa(A, t) = {Bu, a(A, t)} = w(A, t )  (3.3b) 
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where 

B, = - dA w(A, t)a*(A, t ) .  (3.4) I 

5 

Here @(A,  r )  is the arbitrary solution of equation (3.2); a*(& t )  is the quantity 
canonically conjugate to u(A, t ) .  Since the general solution of equation (3.2) is of the 
form p ( A  ) exp(-if(A It), where p ( A )  is an arbitrary function of A, then for B, one obtains 

B, = dA p(A)BA (3.5) 

where 

BA = -exp(-if(A)t)a*(A, t) = -a*(& 0). 

Thus the general Backlund transformation is the superposition of elementary Backlund 
transformations with the generators BA, the parameters being the function p ( A )  at fixed 
A. Since {BA, BA,} = 0 the infinite group of Backlund transformations is Abelian. For the 
elementary Backlund transformation, 

13.6) &,a(A, ~ ) = - ~ ( A ’ ) B A , ,  a(A ,  t ) ) =  S A , A ’ P ( A )  exp(-if(A)t), 

(a/at)(a’(A, t )  - a (A’, t ) )  = if(A)(a‘(A, t )  - a (A, t ) ) .  

and this can be given as follows: 

(3.7) 
Let us now assume that among the variables u(A, t )  there are variables of different 

types which are numerated correspondingly by indices of different types (continuous, 
discrete indices). For example, for the equations solved by the inverse scattering 
method two types of variables a occur; variables of the continuous spectrum (continu- 
ous index A) and variables of the discrete spectrum (soliton variables). For the 
sine-Gordon equation the discrete variables are divided into two types: the first type of 
variables corresponds to N soliton solutions, the second to the breathers. 

The definite type of ‘elementary’ Backlund transformation corresponds to the 
definite type of variables. The Backlund transformation corresponding to the continu- 
ous spectrum adds the solution p(A)exp(-if(A)t) to the initial one. The soliton 
Backlund transformation adds one soliton (pi exp(-ifit)) to the solution. Similarly to 
this, the Backlund transformation for breathers exists. For each type of the ‘elemen- 
tary’ Backlund transformations we can write the analogues of formulae (3.6) and (3.7). 
The generators of different ‘elementary’ Backlund transformations commute. The 
general Backlund transformation is the superposition of ‘elementary’ Backlund trans- 
formations of different types: 

B, = dAp(A)BA + x p i B i + .  . . . (3.8) 

Since the initial nonlinear completely integrable equation is connected with the 
equation of the type (3.2) by the canonical transformation, it has the infinite Abelian 
group of Backlund transformations. Existence of the linear principle of superposition 
for the variables of the type a(A, t) leads to the existence of the nonlinear principle of 
superposition for the initial field variables @(x) (Lamb 1971). The Abelian character of 
the Backlund transformations group is reflected in the commutativity of the cor- 
responding Lamb diagrams (Lamb 197 1 ,  Wahlquist and Estabrook 1973, McLaughlin 
and Scott 1973). 

I 
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The ‘elementary’ Backlund transformations of different types are simple in the 
variables a (A, t )  (formulae (3.6), (3.7)). They are given in the initial field variables $(x) 
by complex nonlinear transformations whose explicit form can be, as a rule, found only 
for the variables of the discrete spectrum. This is connected with the fact that the 
equations of the inverse scattering method can only be solved exactly for the discrete 
spectrum (soliton variables). For example, for the sine-Gordon equation ( N  = 1) 

~ q ( x ) + ( m ~ / J h )  sin((JA/m)cp(x)) = o (0 = a2/ax ”ax @) 

the elementary Backlund transformation cp + Q’, corresponding to the addition of one 
soliton to the solution, is of the following form in the Lorentz-invariant form (for the 
non-invariant form see for example Lamb 1971): 

aQt/axw +E,,, aQ/axv = ( 2 m 2 / J h ~ ) p ,  cos(Jhcp1/2m) sin(Jh(p/2m) 

where p,pF = M 2 ,  M is the soliton mass and E,, is the antisymmetric tensor (eo1 = 1). 
For other equations integrated by the inverse scattering method, only the soliton 
elementary Backlund transformations are found. However, for these equations there 
are elementary Backlund transformations corresponding to the other parts of the 
spectrum: continuous and double solitonst. 

Hence we see that any nonlinear completely integrable equation has the infinite 
Abelian group of Backlund transformations. One emphasises that the Abelian charac- 
ter of the Backlund transformations group is a direct consequence of the total 
integrability of the equation. 

The infinite Backlund transformations group and the infinite symmetry group form 
together an infinite dynamical group of the completely integrable equation. The 
solution space of this equation is the homogeneous space of the dynamical group. The 
information of the completely integrable equation coincides with that of its dynamical 
group. 

Thus, the completely integrable field system can be formulated either in terms of a 
nonlinear equation or a dynamical group. These two formulations give two different 
but equivalent methods for investigating completely integrable systems. 

In this respect, the completely field-integrable systems are infinite (over the number 
of degrees of freedom); analogues of such systems with finite number of degrees of 
freedom are the hydrogen atom, the harmonic oscillator, etc (see Kleinert 1968 and 
Aronson et a1 1974). The systems indicated above possess an ‘obvious’ group of 
symmetry, and also hidden symmetry groups and dynamical groups. These are the 
finite Lie groups for the systems with a finite number of degrees of freedom (SO(4) and 
S0(2 ,4 )  for a hydrogen atom; SU(3) and SU(3, l )  for the oscillator), and the infinite Lie 
groups for the completely integrable systems with an infinite number of degrees of 
freedom (‘hidden’ symmetry groups of the type Grim: infinite dynamical groups). As far 
as the systems with a finite number of degrees of freedom are concerned, methods of 
investigation are developed which are based on using the algebraic structure of 
dynamical groups. Similar methods can also be developed for systems with an infinite 
number of degrees of freedom, in particular for the completely integrable equations. 

- (2m2/Jh~)~ , , , p , ,  sin(Jh (p’/2m) cos(& ~ / 2 m )  (3.9) 

t After preparing this paper for publication the author was informed about the papers of Calogero and 
Degasperis (1976, 1977) in which a large class of Backlund transformations was built for certain classes of 
nonlinear equations. It is possible to show that the Backlund transformations of Calogero and Degasperis 
have the structure described in this section. 
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4. CompIetely integrable equations as theories of spontaneous breakdown 

In this section we shall show that a theory described by some completely integrable 
equation can be obtained by the nonlinear (Nambu-Goldstone) realisation of the 
symmetry under the dynamical group D with the subgroup G,m as a vacuum stability 
group. 

Let us first consider the linear equations (2.1). Based upon the explicit form of the 
generators, it is easy to find the permutation relations of the generators of the group D. 
One writes those which will be required: 

[Bp, BPI]* = 0, [Bq, PPI- = 4,BW (4.1) 

In equation (4.1) the commutator (the minus sign) corresponds to the fields with 
integer spin, and the anticommutator (the plus sign) corresponds to the fields with 
half-integer spin. Inclusion of the anticommutator for spinor fields in equation (4.1) is 
due to the necessity to preserve a correct connection between the spin and statistics. 
Thus, in the case of fermions, a dynamical group is the supergroup. 

Let us now consider the dynamical group D with permutation relations (4.1) as a 
basic one, forgetting about its origin. We show that the theory described by equation 
(4.1) arises from the Nambu-Goldstone realisation of the symmetry under the group D, 
the subgroup G,, being the vacuum stability subgroup, and the field $ ( x )  turns out to 
be the Goldstone one. 

The nonlinear realisation method developed in detail in the papers of Coleman et a1 
(1969), Callan et a1 (1969), Volkov (1973) and Ogievetsky (1974) is the most con- 
venient and natural one for the Nambu-Goldstone realisation of symmetry. According 
to this method, one must parametrise the quotient space D/GL, (where GLm is the 
group G,, with excluded subgroup of shifts) by means of the fields $,(x) with quantum 
numbers of the generators B, : 

G(x, $) = exp(ix,P,) exp[ i I d"'S(det f(ip))$,(x)B,]. (4.2) 

It is further necessary to consider the action of the group D in this quotient space as a 
group of the left shifts: 

D 
G(x, 4)  + G(x, $') = grD(x, $1. (4.3) 

The transformation law of the fields $, (x ) ,  as is easy to see, is homogeneous with 
respect to the group G,,, Under action of the group B, as follows from equations 
(4.1)-(4.3), the fields are transformed inhomogeneously. For the elementary Backlund 
transformation with generator B, we have 

S,$,(x) = 0, expj-ipx), S,$q ( x )  = 0 (4 # P ) .  (4.4) 

Therefore, the fields $,(x) are fields of the Goldstone type. The field 

covariant under the Lorentz group is also the Goldstone one: 

S , ~ ( X )  = wp exp(-ipx). 

(4.5) 
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The Lagrangians invariant with respect to the group D are constructed in a standard 
way from the fields and their covariant derivatives. Using general prescriptions (see 
Coleman et a1 1969, Callan et a1 1969) for defining the covariant derivatives V,$,(x), 

G-’(x, $)(a/axfi)G(x, $) = iP, + i  I d”’p S(det F(ip))V&,(x)Bp 

V,$p(x) = ( a / a x ” ) $ P ( x )  +iP,$Pb). (4.6) 

we find 

Note that the simplicity of the covariant derivative (4.6) is due to choosing in equation 
(2.1) the basis from the eigenfunctions of the momentum P,. 

Then, since V,+,(x) and n,(x) (the canonical momentum conjugate to the field 
$,(x))t are invariant under the group B, the Lagrangian invariant under the group D 
contains only V,+,(x) and n,(x). Thus, 

3% = 9ef“c“,,,(v,$,(x), nqb)). (4.7) 

In the case when the symmetry group G,, contains the Lorentz group as a subgroup, 
Pinu is the integral over the momenta p .  Moreover, for those Lagrangians bilinear with 
respect to the fields $,(x),  

(4.8) 

where G, is the n parametric symmetry group (see Konopelchenko 1977). 
Restricting ourselves now to the Lagrangian bilinear over the fields, we obtain the 

theory wherein the field $,(x), and thereby the field d(x) defined by formula (4.3, 
satisfy equation (2.1) that permits us to identify the field d(x) with the field +(x). Let us 
give two simple examples. 

9 i n v  
(D) =-%n,)(v~$p(x), nq(x) )=sgn) (Vf i+p(X)7  nq(x)) 

(i) The scalar field with mass m : 

Sin’ = J dN+’p s(p2-m2)V,cp,(x)V,cp,(x) 

= I dN+’p S ( p 2 -  m2)[(acpp(x)/ax’) arp,(x)/ax” - m2cpi(x)] 

+@/ax”) I dN+’p 6(p2-m2)ip,rpi(x). (4.9) 

It is seen from equation (4.9) that pinu is distinguished from the standard Lagrangian 
for a scalar field only by the term aI,/ax”, where 1, = JdN+’p6(pZ - mZ)ip,cp:(x), and 
equations for rpp(x) and d(x) are of the following form: 

(U+ m2)cpp(x) = 0, (O+m2)4(x)=0.  

(ii) The spinor field with mass m : 

dN+’p S ( p z -  m2)irIP(x)Y,Vp+,(x) 

= I dNC’p S ( p 2 -  m2)JP(x)(iY, a/ax” + m)$,(x).  (4.10) 

t For example, for the Dirac spinor lT,(x) = & ( x )  = JI; ( x ) y o .  
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The corresponding equations are: 

(iy, a / a P  + m ) & ( x )  = 0, (iy, a/ax” + m)t,h(x) = 0. 

We have thus justified that any field described by a linear equation can be 
interpreted as a Goldstone one. 

Let us proceed now to the general case of nonlinear completely integrable equa- 
tions. In order to prove the theorem formulated at the beginning of this section, one 
takes advantage of the fact that a nonlinear completely integrable equation possessing 
the infinite Abelian group of Backlund transformations can be converted into a linear 
one. After carrying out such a linearising canonical transformation, the considerations 
mentioned above are applicable to our theory. New canonical variables (wherein the 
equation is 1inear)t are the Goldstone ones correspondingly, and can be obtained as a 
result of the nonlinear realisation of symmetry under the dynamical group D. A 
structure of the dynamical group (particularly, the Backlund transformations group) is 
invariant with respect to canonical transformations. Nonlinear realisation of the 
dynamical group which corresponds to initial field variables is connected with nonlinear 
realisation of the group D in linearised variables by a certain canonical transformation, 
and therefore this realisation is equivalent to it.$ 

In § 3 it has been proved that the information which is involved in the completely 
integrable equation and that of its dynamical group coincide. The theorem proved by us 
is indicative of the fact that the completely integrable equation itself can be obtained 
from the dynamical group by purely group methods. 

The fact that completely integrable theories are the theories of spontaneous 
breakdown indicates also the closeness of the notion of a dynamical group of completely 
integrable equations (this is a generalisation of the notion of dynamical groups in 
quantum mechanical problems in the case of an infinite number of degrees of freedom 
(field)) to the notion of dynamical groups according to Weinberg (1970). 

The difference is the following. In the first case, the dynamical groups act within the 
solution space in a transitive way, i.e. the solution space of the irreducible represen- 
tations of the dynamical group. In the second case, for example, for the local gauge 
groups, the solution space is the space of the reducible representation: the solutions 
with fixed (up to iso-rotations) strength tensor F,, form the invariant subspace. 

5. On spontaneous breakdown: possible values of quantum numbers for the Goldstone 
particles 

Let us consider the result of the preceding section from the viewpoint of the theory of 
spontaneously broken symmetries. We have justified that any free field can be 
interpreted as a Goldstone one. This means that free Goldstone particles can have any 
values of any quantum numbers. It is clear that this is valid in the general case as well. 
The values of quantum numbers of the Goldstone particles are determined by the 
structure of a dynamical group. 

In particular, the question about a value of the Goldstone particle’s mass is 
associated, as it is easy to see, with the spectrum of momenta over which the integration 
for an element of the group B is carried out in expression (2.13). If det f(i(ip) = p 2  - m 2  

t For simplicity, one restricts oneself to the variables of continuous spectrum. 
1 The notion of equivalence of nonlinear realisations is defined in the paper by Coleman er a1 (1969). 
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and m # 0, then the Goldstone particle has the mass m t .  At m = 0 the Goldstone 
particle is massless. In this case, the group of Backlund transformations contains the 
subgroup of the transformations, which correspond top  = 0 (with the generator BO), for 
which 

where wo is an arbitrary constant. 
Invariance of the equation with respect to the transformation of the form (5.1) is the 

necessary condition for the massless character of the Goldstone field. In the particular 
case of the vector field, this result was obtained by Ferrari and Picasso (1971) and 
Brandt and Wing-Chin (1974). 

Usually considered, Goldstone particles are massless. This is connected with the 
fact that the commutator of the generator corresponds to the spontaneously broken 
symmetry, or is equal to zero (internal symmetries), or proportional to P' (conformal 
group). The massive Goldstone particle results from the spontaneous breakdown of 
symmetry whose generators B do not commute with P2, i.e. [B, P*]I) Z P'I) for all of the 
states I ). For instance, for the dynamical group with permutation relations (2.3), 
[P2,Bq]=q,P,Bq+q,BqPll and the states B;IO), where 10) is the vacuum vector 
(P,(O) = 0), describe the particles of mass m: 

S O r L ( X )  =wo (5.1) 

PzB,'\O) = m2BlIO). 

Note that, although the cases of massless and massive Goldstone particles are 
described in the framework of the nonlinear realisation method in the same manner, a 
physical difference exists between them, namely: in the first case, the non-invariance 
leads to degeneracy of the states. In particular, the vacuum 10) is degenerate. In the 
second case, the transformations of spontaneously broken symmetry relate the states 
with the same action but with different energy, and thereby the vacuum is non-invariant 
but non-degenerate. 

The relation between the values of the mass of the Goldstone field and the structure 
of transformations of the group B occurs also in the case of non-Abelian groups B, 
which correspond to nonlinear equations (non-completely integrable ones), for 
example in the case of non-Abelian gauge groups (the Yang-Mills theory). 

Without any variations, the results obtained above are also true for the quantum 
field theory. In this case, one can use the methods proposed by Dothan and Gal-Ezer 
(1972). In this paper, a principal possibility of the existence of massive Goldstone 
particles has been apparently noted for the first time. 

Appendix 

Here we shall show that the space of states of the completely integrable theory is the 
space of one irreducible infinite-dimensional representation of the group D. 

Let us consider linear equations ( 0  2). The permutation relations of the algebra of 
the dynamical group D are of the form (in momentum representation): 

[P,, PYI- = 0, [Bq, PUI- = qpBq, CBp, BPI]* = 0 (A.1) 

plus the permutation relation of the remaining generators of the group G,, with the 
generators B, which will not be written out (see equation (2.16)). 

t The neutral massive vector field theory belongs to this case. 
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To construct the representations of a dynamical group, it is necessary, as usual, to 
choose the total set of commuting generators. The general eigenfunctions of these 
generators will be the basis functions, and the eigenvalues of these generators will 
numerate the basis. It is seen from the permutation relations that, in the case of the 
fields with integer spin, there exist at least two such sets. The first consists of the 
operators of the momentum P, and the generators of the symmetry group G,,, which 
commute with P,, i.e. of the generators of the maximum Abelian subgroup of the group 
G,. The second set consists of the generators B, of elementary Backlund trans- 
formations. For fermions there exists only the first possibility. 

For simplicity let us restrict ourselves to the scalar field theory. Let us consider now 
the basis from the eigenfunctions of the momentum 

From the relations (A.2) it follows that 

Suppose that there exists the vector IO), so that 

P, 10) = 0. 04.4) 

Then there is no difficulty in seeing that the vectors 

lo), B;IO), B,IO), B;,B;&O, B,,B%O, B;,B,IO), B,,B,IO) . . . (A.5) 

form the basis of the irreducible infinite-dimensional representation of the group D. In 
the case of Lorentz-invariant theories we can remove negative energies, extracting 
positive- and negative-frequency parts from the generators B, and performing the 
usual reinterpretation. A similar construction is true for the case of an arbitrary free 
field. 

Thus, the space of an irreducible infinite-dimensional representation of a dynamical 
group is of the form 

~O)OB~~O~OB,~O>OB,',~O) 0 B;zlO)O. . . .  (A.6) 

It is easy to see that the construction (A.6) coincides with the construction, which is 
well known in the quantum field theory, of Fock space, i.e. the space of states of 
free quantum field theory (see for example Schweber 1961). 

If we choose the eigenfunctions of the operators B, as a basis, then, taking into 
account that B, is a linear combination of the operators of creation and annihilation, 
one obtains the so-called coherent representation. 

The conclusions made above are valid also for nonlinear completely integrable 
equations, if one considers them in linearising variables. Then only the operators B, 
corresponding to the discrete spectrum are added. They have the sense of the operators 
of creation and annihilation of the solitons. However, in transition to the initial field 
variables, difficulties arise due to ambiguity of canonical transformations in the quan- 
tum case. 
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